LECTURE 17 THURSTAY NOVEMBER 7

Use of MATHMODELS:

end

Single-Choice Principle

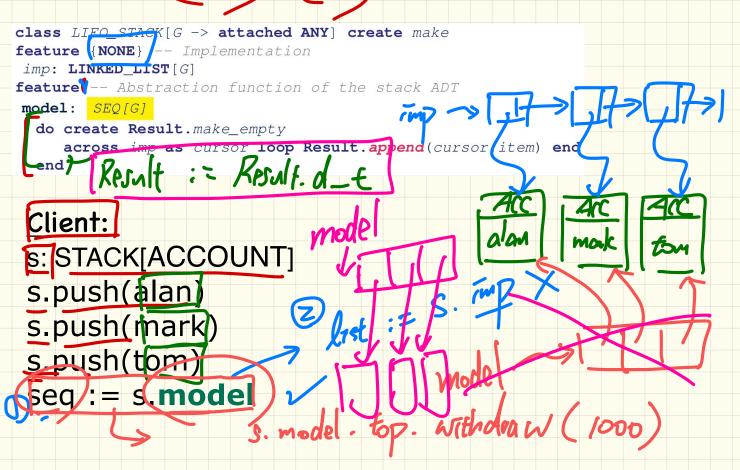
```
class LIFO STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 1
 imp: ARRAY[G]
feature -- Abstraction function of the stack ADT
 model: SEO[G]
  do create Result.make_from_array (imp)
   ensure
    counts: imp.count = Result.count
    contents: across 1 | . . | Result.count as i all
                Result[i.item] ~ imp[i.item]
   end
feature -- Commands
 make do create imp.make_empty ensure model.count = 0 end
 push (q: G) do imp.force(q, imp.count + 1)
   ensure pushed: model ~ (old model.deep_twin).appended(q)
 pop do imp.remove_tail(1)
   ensure popped: model ~ (old model.deep_twin).front end
end
```

```
class LIFO STACK[G -> attached ANY] create make
                                                                  class LIFO STACK[G -> attached ANY] create make
feature {NONE} -- Implementation Strategy 2 (first as top)
 imp: LINKED_LIST[G]
                                                                    imp: LINKED_LIST[G]
feature -- Abstraction function of the stack ADT
 model: SEO[G]
                                                                    model: SEQ[G]
   do create Result.make_empty
                                                                     do create Result.make_empty
     across imp as cursor loop Result.prepend(cursor.item) end
                                                                     ensure
   ensure
                                                                      counts: imp.count = Result.count
    counts: imp.count = Result.count
    contents: across 1 | . . | Result.count as i all
                Result[i.item] ~ imp[count - i.item + 1]
                                                                     end
   end
                                                                  feature -- Commands
feature -- Commands
 make do create imp.make ensure model.count = 0 end
                                                                    push (g: G) do imp.extend(g)
 push (q: G) do imp.put_front(q)
  ensure pushed: model ~ (old model.deep_twin).appended(g) end
                                                                    pop do imp.finish ; imp.remove
 pop do imp.start ; imp.remove
                                                                     ensure popped: model ~ (old model.deep_twin).front end
  ensure popped: model ~ (old model.deep_twin).front end
```

end

```
feature {NONE} -- Implementation Strategy 3 (last as top)
feature -- Abstraction function of the stack ADT
     across imp as cursor loop Result.append(cursor.item) end
    contents: across 1 | . . | Result.count as i all
                Result[i.item] ~ imp[i.item]
 make do create imp.make ensure model.count = 0 end
  ensure pushed: model ~ (old model.deep_twin).appended(q) end
```

Safe Use of model by Evil Clients



Testing REL in MATHMODELS

```
r.overridden(\{(a,3),(c,4)\})
   \{(a,3),(c,4)\} \{(b,2),(b,5),(d,1),(e,2),(f,3)\}
                        r.domain_subtracted(t.domain)
= \{(a,3),(c,4),(b,2),(b,5),(d,1),(e,2),(f,3)\}
```

```
do
 create r.make_from_tuple_array (
   <<["a", (1], ["b", 2], ["c", 3],
     ["a", 4], ["b", 5], ["c", 6],
     ["d", 1], ["e", 2], ["f", 3]>>)
 create ds.make from array (<<"a">>>)
  -- r is not changed by the query 'domain_subtracted'
 t := r.domain\_subtracted (ds) \longrightarrow TMM
 Result :=
```

```
Say r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}
  r.domain: set of first-elements from r
  \circ r.domain = { d \mid (d, r) \in r }
  • e.g., r.domain = \{a, b, c, d, e, f\}
  r. range: set of second-elements from r
  \circ r.range = \{ r \mid (d, r) \in r \}
  \circ e.g., r.range = \{1, 2, 3, 4, 5, 6\}
  r. inverse: a relation like r except elements are in reverse order
  ∘ r.inverse = { (r, d) | (d, r) \in r }
  • e.g., r.inverse = \{(1,a),(2,b),(3,c),(4,a),(5,b),(6,c),(1,d),(2,e),(3,f)\}
• | r. domain_restricted(ds) |: sub-relation of r with domain ds.
   ∘ r.domain_restricted(ds) = { (d,r) | (d,r) \in r \land d \in ds }
   • e.g., r.domain_restricted(\{a, b\}) = \{(a, 1), (b, 2), (a, 4), (b, 5)\}
 r. domain_subtracted(ds): sub-relation of r with domain not ds.
```

∘ r.domain_subtracted(ds) = $\{ (d,r) \mid (d,r) \in r \land d \notin ds \}$ • e.g., r.domain_subtracted($\{a, b\}$) = $\{(c, 6), (d, 1), (e, 2), (f, 3)\}$ r. range_restricted(rs): sub-relation of r with range rs.

 \circ r.range_restricted(rs) = $\{ (d,r) \mid (d,r) \in r \land r \in rs \}$ • e.g., r.range_restricted($\{1, 2\}$) = $\{(a, 1), (b, 2), (d, 1), (e, 2)\}$

r. range_subtracted(ds): sub-relation of r with range not ds. \circ r.range_subtracted(rs) = { $(d,r) \mid (d,r) \in r \land r \notin rs$ }

• e.g., r.range_subtracted($\{1, 2\}$) = $\{(c, 3), (a, 4), (b, 5), (c, 6)\}$

-- r is changed by the command 'domain subtract'

r. domain subtract (ds) Result :=

end

test rel: BOOLEAN

ds: SET[STRING]

check Result end

r, t: REL[STRING, INTEGER]

local

t ~ r and not t.domain.has ("a") and not r.domain.has ("a")

t /~ r and not t.domain.has ("a") and r.domain.has ("a")

MATHMODELS SEQ SET REL TUN

Say
$$r = \{(a,1), (a,2), (c,3), (a,4), (a,5), (c,6), (d,1), (e,2), (f,3)\}$$

- r.domain: set of first-elements from r
- r.domain = { d | (d,r) ∈ r }
 e.g., r.domain = {a,b,c,d,e,f}
- r.range: set of second-elements from r
 o r.range = { r | (d, r) ∈ r }
- e.g., r.range = {1,2,3,4,5,6}
- r.inverse: a relation like r except elements are in reverse order
 r.inverse = { (r, d) | (d, r) ∈ r }
- r.inverse = $\{ (r,d) \mid (d,r) \in r \}$ • e.g., r.inverse = $\{ (1,a), (2,b), (3,c), (4,a), (5,b), (6,c), (1,d), (2,e), (3,f) \}$

V. overvide $\left(\left\{\left(\frac{9}{9},4\right),\left(\frac{1}{9},6\right)\right\}\right)$

r. override ((C) >)

Say
$$r = \{(b,1), (b,2), (c,3), (d,4), (b,5), (c,6), (d,1), (e,2), (f,3)\}$$

- r. domain: set of first-elements from r
 - \circ r.domain = { $d \mid (d, r) \in r$ }
- e.g., r.**domain** = $\{a, b, c, d, e, f\}$ • r.range: set of second-elements from r
 - \circ r.range = $\{ r \mid (d, r) \in r \}$ \circ e.g., r.**range** = $\{1, 2, 3, 4, 5, 6\}$
- r. *inverse*: a relation like r except elements are in reverse order
 - ∘ r.**inverse** = { $(r, d) | (d, r) \in r$ }
 - e.g., r.inverse = $\{(1,a),(2,b),(3,c),(4,a),(5,b),(6,c),(1,d),(2,e),(3,f)\}$

Say
$$r = \{(a,1), (b,2), (c,3), (a,4), (b,5), (c,6), (d,1), (c,2), (f,3)\}$$
• r . $domain$: set of first-elements from r

- $\circ r.\mathbf{domain} = \{ d \mid (d, r) \in r \}$ • e.g., r.**domain** = $\{a, b, c, d, e, f\}$
- r.range: set of second-elements from r
 - \circ r.range = $\{ r \mid (d, r) \in r \}$ \circ e.g., r.**range** = $\{1, 2, 3, 4, 5, 6\}$
- | r.*inverse* |: a relation like *r* except elements are in reverse order • r.inverse = $\{ (r, d) | (d, r) \in r \}$ • e.g., r.**inverse** = $\{(1,a),(2,b),(3,c),(4,a),(5,b),(6,c),(1,d),(2,e),(3,f)\}$

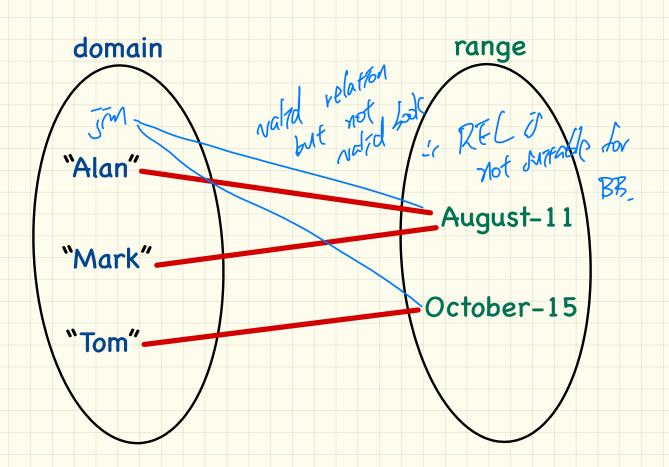
r. domain_restrict

r. range_subtract & Z

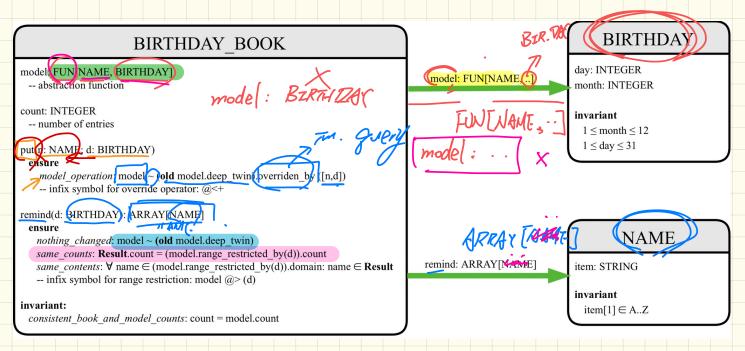
(r) overrole (--) Y. Overrodolen-by (...)

Tumutable gray

Model of an Example Birthday Book



Birthday Book: Design

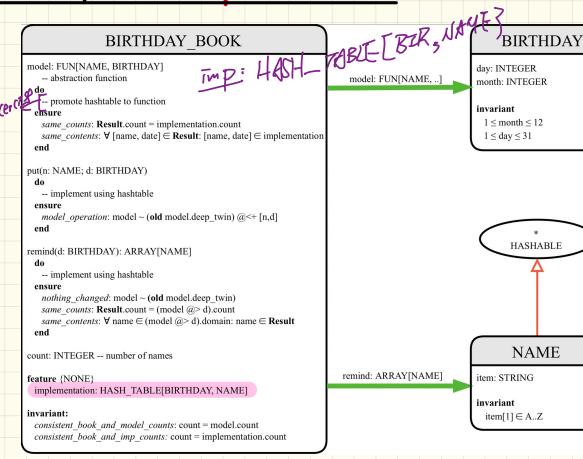


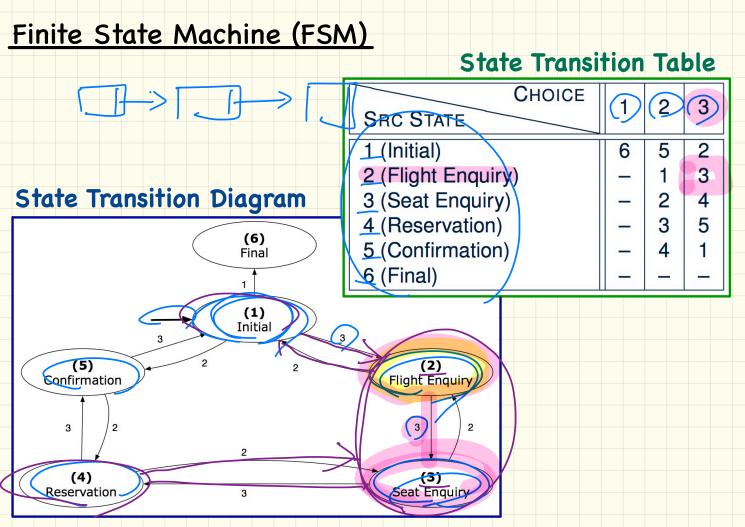
mark ton tru 5achdays > Jans augh Rut (aan, dec 4) MONEC decession Overridden : of the name exist, overwrite the birthology

Mode (-MP ns I alan mark Em tom yout to mark 605 7 [NOV] OFF6 NOV] a: ARRAY [STRING] model. range_vestition_by
book. remind (NOV 7).

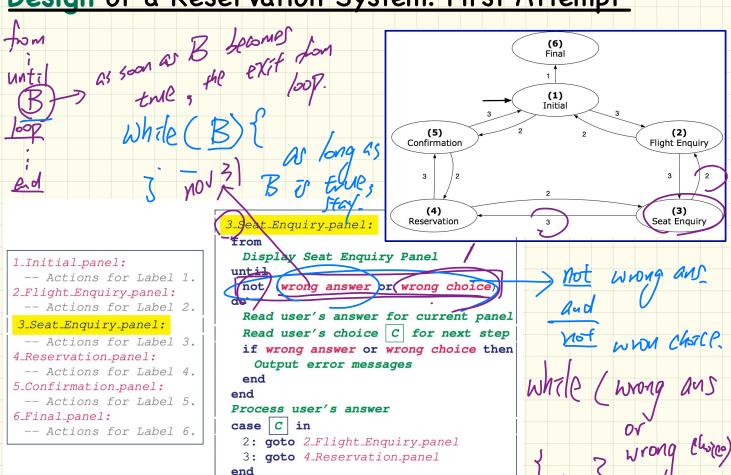
L> < alcn., tom>> tom>

Birthday Book: Implementation





Design of a Reservation System: First Attempt



Design of a Reservation System: Second Attempt (1)

```
transition src: INTEGER; choice: INTEGER): INTEGER

-- Return state by taking transition 'choice' from 'src' state.

require valid_source_state: 1 ≤ src ≤ 6

valid_choice: 1 ≤ choice ≤ 3

ensure valid_target_state: 1 ≤ Result ≤ 6
```

State Transition Table

SRC STATE CHOICE	1	2	3	
1 (Initial)	6	5	2	ı
2 (Flight Enquiry)	_	1	3	L
3 (Seat Enquiry)	_	2	14	ŀ
4 (Reservation)	_	3	5	t
5 (Confirmation)	_	4	1	
6 (Final)	_	_	_	

Examples: $(3, (2) \rightarrow 2)$ transition $(3, (2) \rightarrow 2)$ transition $(3, (3) \rightarrow 4)$

2D Array Implementation

				•					
					choi	ce			
	_		1		2			3	_/
	1		6		5		:	2	
	2	8		8	1		:	3	
-4-4-	3				2		4	4	
state	4				3			5	
	5				4			1	
	6								7
					0		210 N		_

Design of a Reservation System: Second Attempt (2)

A Top-Down & Hierarchical Design

